Part Number Hot Search : 
LBT14075 ASM0402C BSO615N CY7C4292 D1776 STUB056 LBT14075 BR2506
Product Description
Full Text Search
 

To Download IRG4IBC20UDPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRG4IBC20UDPBF insulated gate bipolar transistor with ultrafast soft recovery diode features e g n-channel c v ces = 600v v ce(on) typ. = 1.85v @v ge = 15v, i c = 6.5a ultrafast copack igbt 12/30/03 pd -94917 parameter typ. max. units r jc junction-to-case - igbt ??? 3.7 r jc junction-to-case - diode ??? 5.1 c/w r ja junction-to-ambient, typical socket mount ??? 65 wt weight 2.0 (0.07) ??? g (oz) thermal resistance to-220 fullp ak www.irf.com 1 parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current 11.4 i c @ t c = 100c continuous collector current 6.0 i cm pulsed collector current 52 a i lm clamped inductive load current 52 i f @ t c = 100c diode continuous forward current 6.5 i fm diode maximum forward current 52 visol rms isolation voltage, terminal to case 2500 v v ge gate-to-emitter voltage 20 p d @ t c = 25c maximum power dissipation 34 p d @ t c = 100c maximum power dissipation 14 t j operating junction and -55 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw. 10 lbf?in (1.1 n?m) absolute maximum ratings w ? 2.5kv, 60s insulation voltage ? 4.8 mm creapage distance to heatsink ? ultrafast: optimized for high operating frequencies 8-40 khz in hard switching, >200 khz in resonant mode ? igbt co-packaged with hexfred tm ultrafast, ultrasoft recovery antiparallel diodes ? tighter parameter distribution ? industry standard isolated to-220 fullpak tm outline benefits ? simplified assembly ? highest efficiency and power density ? hexfred tm antiparallel diode minimizes switching losses and emi ? lead-free
IRG4IBC20UDPBF 2 www.irf.com parameter min. typ. max. units conditions q g total gate charge (turn-on) ??? 27 41 i c = 6.5a qge gate - emitter charge (turn-on) ??? 4.5 6.8 nc v cc = 400v see fig. 8 q gc gate - collector charge (turn-on) ??? 10 16 v ge = 15v t d(on) turn-on delay time ??? 39 ??? t j = 25c t r rise time ??? 15 ??? ns i c = 6.5a, v cc = 480v t d(off) turn-off delay time ??? 93 140 v ge = 15v, r g = 50 ? t f fall time ??? 110 170 energy losses include "tail" and e on turn-on switching loss ??? 0.16 ??? diode reverse recovery. e off turn-off switching loss ??? 0.13 ??? mj see fig. 9, 10, 11, 18 e ts total switching loss ??? 0.29 0.3 t d(on) turn-on delay time ??? 38 ??? t j = 150c, see fig. 9, 10, 11, 18 t r rise time ??? 17 ??? ns i c = 6.5a, v cc = 480v t d(off) turn-off delay time ??? 100 ??? v ge = 15v, r g = 50 ? t f fall time ??? 220 ??? energy losses include "tail" and e ts total switching loss ??? 0.49 ??? mj diode reverse recovery. l e internal emitter inductance ??? 7.5 ??? nh measured 5mm from package c ies input capacitance ??? 530 ??? v ge = 0v c oes output capacitance ??? 39 ??? pf v cc = 30v see fig. 7 c res reverse transfer capacitance ??? 7.4 ??? ? = 1.0mhz t rr diode reverse recovery time ??? 37 55 ns t j = 25c see fig. ??? 55 90 t j = 125c 14 i f = 8.0a i rr diode peak reverse recovery current ??? 3.5 5.0 a t j = 25c see fig. ??? 4.5 8.0 t j = 125c 15 v r = 200v q rr diode reverse recovery charge ??? 65 138 nc t j = 25c see fig. ??? 124 360 t j = 125c 16 di/dt 200a/s di (rec)m /dt diode peak rate of fall of recovery ??? 240 ??? a/s t j = 25c see fig. during t b ??? 210 ??? t j = 125c 17 parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage 600 ??? ??? v v ge = 0v, i c = 250a ? v (br)ces / ? t j temperature coeff. of breakdown voltage ??? 0.69 ??? v/c v ge = 0v, i c = 1.0ma v ce(on) collector-to-emitter saturation voltage ??? 1.85 2.1 i c = 6.5a v ge = 15v ??? 2.27 ??? v i c = 13a see fig. 2, 5 ??? 1.87 ??? i c = 6.5a, t j = 150c v ge(th) gate threshold voltage 3.0 ??? 6.0 v ce = v ge , i c = 250a ? v ge(th) / ? t j temperature coeff. of threshold voltage ??? -11 ??? mv/c v ce = v ge , i c = 250a g fe forward transconductance 1.4 4.3 ??? s v ce = 100v, i c = 6.5a i ces zero gate voltage collector current ??? ??? 250 a v ge = 0v, v ce = 600v ??? ??? 1700 v ge = 0v, v ce = 600v, t j = 150c v fm diode forward voltage drop ??? 1.4 1.7 v i c = 8.0a see fig. 13 ??? 1.3 1.6 i c = 8.0a, t j = 150c i ges gate-to-emitter leakage current ??? ??? 100 na v ge = 20v switching characteristics @ t j = 25c (unless otherwise specified) electrical characteristics @ t j = 25c (unless otherwise specified)
IRG4IBC20UDPBF www.irf.com 3 0.1 1 10 100 0.0 2.0 4.0 6.0 8.0 10.0 f, frequency (khz) load current (a) fig. 1 - typical load current vs. frequency (load current = i rms of fundamental) fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics 0.1 1 10 100 4 6 8 10 12 c i , collector-to-emitter current (a) ge t = 25c t = 150c j j v , gate-to-emitter voltage (v) a v = 10v 5s pulse width cc 0.1 1 10 100 0.1 1 1 0 ce c i , collector-to-emitter current (a) v , collector-to-emitter voltage (v) t = 150c t = 25c j j a v = 15v 20s pulse width ge 60% of rated voltage i ideal diodes square wave: for both: duty cycle: 50% t = 125c t = 90c gate drive as specified sink j power dissipation = w 9.5
IRG4IBC20UDPBF 4 www.irf.com fig. 4 - maximum collector current vs. case temperature fig. 6 - maximum igbt effective transient thermal impedance, junction-to-case 1.0 1.4 1.8 2.2 2.6 -60 -40 -20 0 20 40 60 80 100 120 140 160 ce v , collector-to-emitter voltage (v) v = 15v 80s pulse width ge a t , junction temperature (c) j i = 6.5a i = 13a i = 3.3a c c c fig. 5 - typical collector-to-emitter voltage vs. junction temperature 25 50 75 100 125 150 0 2 4 6 8 10 12 t , case temperature ( c) maximum dc collector current(a) c 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 10 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response)
IRG4IBC20UDPBF www.irf.com 5 fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. junction temperature 0 200 400 600 800 1000 1 10 100 ce c, capacitance (pf) v , collector-to-emitter voltage (v) a v = 0v, f = 1mhz c = c + c , c shorted c = c c = c + c ge ies ge gc ce res gc oes ce gc c ies c res c oes 0 4 8 12 16 20 0 5 10 15 20 25 30 ge v , gate-to-emitter voltage (v) g q , total gate charge (nc) a v = 400v i = 6.5a ce c 0.1 1 10 -60 -40 -20 0 20 40 60 80 100 120 140 160 total switching losses (mj) a t , junction temperature (c) j i = 13a i = 6.5a i = 3.3a r = 50 ? v = 15v v = 480v c c c g ge cc 0.29 0.30 0.31 0.32 0 102030405060 g total switching losses (mj) a v = 480v v = 15v t = 25c i = 6.5a r , gate resistance ( ? ) cc ge j c
IRG4IBC20UDPBF 6 www.irf.com 0.1 1 10 100 1 10 100 1000 v = 20v t = 125 c ge j o safe operating area v , collector-to-emitter voltage (v) i , collector current (a) ce c fig. 11 - typical switching losses vs. collector-to-emitter current fig. 12 - turn-off soa fig. 13 - maximum forward voltage drop vs. instantaneous forward current 0.0 0.3 0.6 0.9 1.2 0 2 4 6 8 10 12 14 c total switching losses (mj) i , collector-to-emitter current (a) a r = 50 ? t = 150c v = 480v v = 15v g j cc ge 0.1 1 10 100 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 fm f instantaneous forward current - i (a) forward voltage drop - v (v) t = 150c t = 125c t = 25c j j j
IRG4IBC20UDPBF www.irf.com 7 fig. 14 - typical reverse recovery vs. di f /dt fig. 15 - typical recovery current vs. di f /dt fig. 16 - typical stored charge vs. di f /dt fig. 17 - typical di (rec)m /dt vs. di f /dt 0 100 200 300 400 500 100 1000 f di /dt - (a/s) rr q - (nc) i = 16a i = 8.0a i = 4.0a f f f v = 200v t = 125c t = 25c r j j 100 1000 10000 100 1000 f di /dt - (a/s) di(rec)m/dt - (a/s) i = 16a i = 8.0a i = 4.0a f f f v = 200v t = 125c t = 25c r j j 1 10 100 100 1000 f di /dt - (a/s) i - (a) irrm i = 16a i = 8.0a i = 4.0a f f f v = 200v t = 125c t = 25c r j j 0 20 40 60 80 100 100 1000 f di /dt - (a/s) t - (ns) rr i = 16a i = 8.0a i = 4.0a f f f v = 200v t = 125c t = 25c r j j
IRG4IBC20UDPBF 8 www.irf.com fig. 18b - test waveforms for circuit of fig. 18a, defining e off , t d(off) , t f vce ie dt t2 t1 5% vce ic ipk vcc 10% ic vce t1 t2 dut voltage and current gate voltage d.u.t. +vg 10% +vg 90% ic tr td(on) diode reverse recovery energy tx eon = erec = t4 t3 vd id dt t4 t3 diode recovery waveforms ic vpk 10% vcc irr 10% irr vcc trr qrr = trr tx id dt same type device as d.u.t. d.u.t. 430f 80% of vce fig. 18a - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f fig. 18c - test waveforms for circuit of fig. 18a, defining e on , t d(on) , t r fig. 18d - test waveforms for circuit of fig. 18a, defining e rec , t rr , q rr , i rr t=5s d(on) t t f t r 90% t d(off) 10% 90% 10% 5% c i c e on e off ts on off e = (e +e ) v v ge
IRG4IBC20UDPBF www.irf.com 9 vg gate signal device under tes t current d.u.t. voltage in d.u.t. current in d1 t0 t1 t2 d.u.t. v * c 50v l 1000v 6000f 100v figure 19. clamped inductive load test circuit figure 20. pulsed collector current test circuit r l = 480v 4 x i c @25c 0 - 480v figure 18e. macro waveforms for figure 18a's test circuit
IRG4IBC20UDPBF 10 www.irf.com notes: repetitive rating: v ge =20v; pulse width limited by maximum junction tem- perature (figure 20) v cc =80%(v ces ), v ge =20v, l=10h, r g = 50 ? (figure 19) pulse width 80s; duty factor 0.1%. pulse width 5.0s, single shot. t = 60s, f = 60hz to-220 full-pak package outline to-220 full-pak part marking information with assembly example: this is an irfi840g lot code 3432 assembled o n ww 24 1999 in th e assem bly lin e "k" part num ber lot c ode assem bly internatio nal rec tifier logo 34 3 2 924k irfi840g date code year 9 = 1999 week 24 lin e k note: "p" in assembly line position indicates "lead-free" data and specifications subject to change without notice. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 12/03
note: for the most current drawings please refer to the ir website at: http://www.irf.com/package/


▲Up To Search▲   

 
Price & Availability of IRG4IBC20UDPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X